随着物联网的高速发展,检测设备成了一个不容忽视的工具,但是目前国内的科技水平来说,检测能力的水平是一个挑战,目前国内的颗粒物监测设备除个别采样器外,均依赖国外产品或国外专利,在一定程度上形成了国外设备制造商垄断的局面。
但国外监测仪器主要针对较低污染浓度设计,在我国较高污染条件下和特殊地区监测条件下的适用性还需要进行系统验证,所以快速建立一套属于自己的检测系统,因地制宜大秀中国特色的检测风变成了什么重要的工作。
目前,PM2.5的监测方法包括称重法、射线法及光谱法。据柴发合介绍,称重法是目前被公认为最准确的颗粒物测量方法,其基本原理是在恒温恒湿条件下使用天平称量采样膜上的样品重量,结合采样流量计算空气中的颗粒物浓度。称重法是目前欧美国家以及我国颗粒物浓度测量中规定的标准方法,虽然仍有一定的不确定性和较低的时间分辨率,但可以保留颗粒物样品,用来进行化学成分分析。
在颗粒物质量浓度在线分析仪中,目前应用最为广泛的两种测量方法是β射线方法和振荡天平法。β射线法主要依靠β射线的衰减作用计算颗粒物质量浓度,而振荡天平法主要依靠颗粒物在滤膜上的集聚对天平振荡系数的改变来计算颗粒物质量浓度。
对此,中国环境科学研究院大气所高健博士介绍说,从仪器原理上来讲,振荡天平法方法相对更能客观反映颗粒物的真实浓度,但在较高湿度环境下容易出现噪音值,其加热管也易使颗粒物中的挥发性物质损失从而降低测量浓度。由于构造复杂,振荡天平法仪器维护起来相对麻烦。
相比之下,β射线法操作简单,维护方便,但测量值往往高出振荡天平法的测量值,而且随颗粒物浓度高低、成分以及环境湿度变化有较大差异。总之,在线测量方法相对于称重法有操作简单、时间分辨率高的优点,但在准确性上还存在较大争议。
目前应用的PM2.5测量技术还包括光散射颗粒物测量方法(光谱法)。其运行原理是通过测量颗粒物进入仪器后对测量光线的散射特征测量颗粒物的大小及数量,
以此计算颗粒物的质量浓度。
这一方法的优点包括反应迅速、设备占地小、安装操作简便、可同时测量多个粒径的颗粒物数量等。但光的散射与颗粒物浓度之间的关系受到诸多因素影响,如颗粒物的化学组成、形状、比重、粒径分布等。这意味着光散射和颗粒物浓度之间的换算公式随时随地都可能在变,需要仪器使用者不断用标准方法进行校正。
对此,柴发合指出,在选择颗粒物监测方法时需要在保证准确性的条件下,根据不同的监测目的和自然条件进行选择。比如,在基本监测中可选择在线监测方法和光谱法,有人员和实验室条件的监测站鼓励使用称重法,而应急监测、特殊条件监测(医疗卫生部门、地铁交通等)可以选择光谱法。
(来源:中国机械设备网)