由于HSIC的基本特点是模仿控制专家的控制行为,因此它的控制算法是多模态控制的,是多种模态控制间的相互交替使用。该算法可以完美地协调控制系统中诸多相互矛盾的控制品质的要求。比如,鲁棒性与精确性,快速性与平稳性等。
三、供水泵站特点与其控制要求
在城市建设的发展过程中,智能建筑已成为人们追求良好居住条件的一个标准,而供水泵站是智能建筑群域不可缺少的环节,合理选择水泵的控制方式,不仅可以降低工程造价,还能节能。
1.供水系统特性。针对特定对象,用户用水最突出的特点是随机性,哪个用户用水、用多少水、什么时候用水等,都具有很大的不确定性。从宏观角度考虑,供水系统特性主要表现在以下几个方面:
(1)系统参数的未知性、时变性、随机性和分散性;
(2)系统滞后的未知性和时变性;
(3)系统严重的非线性;
(4)系统各变量间的关联性;
(5)环境干扰的未知性、多样性和随机性。
2.控制中存在的问题。上述特性,属于不确定性的复杂对象(或过程)的控制问题,传统控制已经无能为力,主要表现在:
(1)不确定性问题。供水系统中的很多控制问题具有不确定性,用传统方法难以建模,因而也无法实现有效的控制。
(2)高度非线性。在供水系统中有大量的非线性问题存在,传统控制理论中,非线性理论远不如线性理论成熟,因方法过分复杂而难以应用。
(3)半结构化与非结构化问题。传统控制理论无法解决供水系统中的半结构化与非结构化问题。
(4)供水系统复杂性问题。复杂系统中各子系统间关系错综复杂,各要素间高度耦合,互相制约,外部环境又极其复杂,传统控制缺乏有效的解决方法。
(5)可靠性问题。常规的基于数学模型的控制问题倾向于是一个相互依赖的整体,对简单系统的控制的可靠性问题并不突出。而对供水系统,如果采用上述方法,则可能由于条件的改变使整个控制系统崩溃。
由此可见,用传统的方法不能对这类系统进行有效的控制,必须探索更有效的控制方法。
3.控制要求。无论采用什么样的控制手段,都要满足用户用水需求(即维持一定的水压)、保护环境不受噪声污染,此外还要考虑节能。因此,控制要求可以确定为在满足用户对供水要求的前提下,尽可能减少环境污染和节约能源。